Identification

Data Identification:
citation:
Citation:
Title:
Large river confluence numerical model output (NERC grant NE/I023228/1)
Date:
CI_Date:
Date Type:
creation
date:
2018-05-01
Identifier:
RS_Identifier:
code:
http://data.bgs.ac.uk/id/dataHolding/13607328
Abstract:
This dataset contains numerical model output of a morphodynamic and sedimentological simulation of a large river confluence based loosely on the Jamuna-Ganges junction in Bangladesh. The work was carried out as part of a joint project between the Universities of Birmingham, Southampton and Exeter. "The sedimentology of fluvial megascours" was a scientific research project funded by NERC. One aspect of the project was to undertake numerical simulations (the data described here) with which to compare with river bed bathymetry data (collected using a multibeam echosounder) and sub bottom seismic profiling data (collected using a surface tow boomer and chirp system). The data has been accepted for a publication in the journal 'Sedimentology' which will be published in 2018 with the title 'The Sedimentology of channel confluences'.
Point of Contact:
Responsible Party:
Individual Name:
Professor Greg Sambrook Smith
Organisation Name:
University of Birmingham
Position Name:
School of Geography, Earth and Environmental Sciences
Contact Info:
CI_Contact:
Address:
Address:
city:
Birmingham
Postal Code:
B15 2TT
e-mail:
not available
role:
pointOfContact
Responsible Party:
Individual Name:
Professor Greg Sambrook Smith
Organisation Name:
University of Birmingham
Position Name:
School of Geography, Earth and Environmental Sciences
Contact Info:
CI_Contact:
Address:
Address:
city:
Birmingham
Postal Code:
B15 2TT
e-mail:
not available
role:
principalInvestigator
Resource Maintenance:
MD_MaintenanceInformation:
maint. / update frequency:
notApplicable
Graphic overview:
Browse Graphic:
File Name:
https://resources.bgs.ac.uk/images/geonetworkThumbs/6d044c3e-f433-3b14-e054-002128a47908.png
Descriptive Keywords:
Keywords:
keyword:
Geology
keyword:
http://www.eionet.europa.eu/gemet/concept?cp=13&langcode=en&ns=5
Thesaurus Name:
Citation:
Title:
GEMET - INSPIRE themes, version 1.0
Date:
CI_Date:
date:
2008-06-01
Date Type:
publication
Keywords:
keyword:
NGDC Deposited Data
keyword:
Seismic data
keyword:
Bathymetry
keyword:
Rivers
keyword:
Sedimentary geology
Thesaurus Name:
Citation:
Title:
BGS Thesaurus of Geosciences
Date:
CI_Date:
date:
2022
Date Type:
revision
Keywords:
keyword:
https://webapps.bgs.ac.uk/services/ngdc/accessions/index.html
keyword:
NGDC Deposited Data
Type:
dataCentre
Keywords:
keyword:
NERC_DDC
Resource Constraints:
MD_LegalConstraints:
Access Constraints:
otherRestrictions
Other Constraints:
no limitations
Other Constraints:
http://inspire.ec.europa.eu/metadata-codelist/LimitationsOnPublicAccess/noLimitations
Other Constraints:
The dataset is made freely available for access, e.g. via the Internet. Either no third party data / information is contained in the dataset or BGS has secured written permission from the owner(s) of any third party data / information contained in the dataset to make the dataset freely accessible.
MD_LegalConstraints:
Use Constraints:
otherRestrictions
Other Constraints:
The copyright of materials derived from the British Geological Survey's work is vested in the Natural Environment Research Council [NERC]. No part of this work may be reproduced or transmitted in any form or by any means, or stored in a retrieval system of any nature, without the prior permission of the copyright holder, via the BGS Intellectual Property Rights Manager. Use by customers of information provided by the BGS, is at the customer's own risk. In view of the disparate sources of information at BGS's disposal, including such material donated to BGS, that BGS accepts in good faith as being accurate, the Natural Environment Research Council (NERC) gives no warranty, expressed or implied, as to the quality or accuracy of the information supplied, or to the information's suitability for any use. NERC/BGS accepts no liability whatever in respect of loss, damage, injury or other occurence however caused.
Other Constraints:
Available under the Open Government Licence subject to the following acknowledgement accompanying the reproduced NERC materials "Contains NERC materials ©NERC [year]"
language:
eng
topicCategory:
geoscientificInformation
Extent:
Extent:
Temporal Element:
TemporalExtent:
extent:
begin / end:
begin:
unknown
end:
before

Distribution

Distribution:
Distribution Format:
Format:
Format Name:
DAT files
Transfer Options:
Digital Transfer Options:
onLine:
CI_OnlineResource:
linkage:
http://www.bgs.ac.uk/services/ngdc/accessions/index.html#item110053
function:
download
Digital Transfer Options:
onLine:
CI_OnlineResource:
linkage:
http://www.bgs.ac.uk/services/ngdc/citedData/catalogue/94da442e-2027-4ee0-b664-9f251eec681f.html
function:
information

Data Quality

Data Quality:
Scope:
DQ_Scope:
level:
nonGeographicDataset
Level Description:
MD_ScopeDescription:
other:
non geographic dataset
Report:
Domain Consistency:
Result:
Conformance Result:
specification:
Citation:
Title:
INSPIRE Implementing rules laying down technical arrangements for the interoperability and harmonisation of Geology
Date:
CI_Date:
Date Type:
publication
date:
2011
explanation:
See the referenced specification
pass:
0
Domain Consistency:
Result:
Conformance Result:
specification:
Citation:
Title:
Commission Regulation (EU) No 1089/2010 of 23 November 2010 implementing Directive 2007/2/EC of the European Parliament and of the Council as regards interoperability of spatial data sets and services
Date:
CI_Date:
Date Type:
publication
date:
2010-12-08
explanation:
See http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2010:323:0011:0102:EN:PDF
pass:
0
Lineage:
LI_Lineage:
statement:
The morphodynamics and deposits of a large river confluence were simulated using a physically-based, two-dimensional, numerical model (HSTAR) that represents water flow, sediment transport (for two size fractions; sand and silt), bank erosion and floodplain formation. The model has been described in detail and evaluated elsewhere (Nicholas et al., 2013), and shown to be suitable for representing a range of large sand-bed rivers (Nicholas, 2013). In particular, unit bars, the key building block of sand-bed rivers, are an emergent characteristic of the simulations, resulting directly from patterns of modelled erosion and deposition, although it should be noted that smaller-scale bedforms (e.g. dunes and ripples) are not resolved within the model. HSTAR solves the two-dimensional, depth-averaged, shallow water equations written in conservative form. Model equations are solved on a structured grid (resolution δx, δy) within which each grid cell is defined as either active river bed or floodplain (including vegetated islands). For active river bed cells, total sand transport (bedload and suspended load) is modelled using the Engelund-Hansen (1967) transport law. For hydraulic roughness, a constant Chezy value of 50 m0.5s-1 is used in all channels and 15 m0.5s-1 on vegetated surfaces. The model domain was set-up to be broadly comparable to the confluence of the Jamuna and Ganges rivers in Bangladesh. All simulations were conducted using a model domain 66 km long (x direction) by 48 km wide (y direction). This resulted in a model with 1100 × 800 cells, each measuring 60 m long by 60 m wide. The initial width of the two simulated channels upstream of the confluence was 3.6 km and 1.8 km, respectively, with initial channel width downstream of the confluence being c. 4 km. The planform configuration of the model was also similar to the field site, with the channel downstream of the confluence forming a 27° angle to the axis of the major incoming channel. Bank erosion rates are modelled as the product of the bank gradient, the total rate of sediment transport parallel to the bankline, and a dimensionless bank erodibility constant. To capture the planform change observed in the field, the bank erodibility constant was set to be lower (i.e. stronger banks) for the smaller upstream tributary channel and the channel downstream of the confluence, but higher (i.e. weaker banks) for the larger incoming tributary. Finally, the simulated flow regime was also broadly similar to the field site, with low flow and peak discharges for the larger channel of 4000 m3s-1 and 80000 m3s-1, respectively, to reflect the monsoon-dominated regime. Flows in the smaller channel were 50% of that in the main channel. Simulated inflow conditions consisted of a series of regular symmetrical hydrographs, where discharge (Q ) as a function of time is: Q = Qlow + (Qmax - Qlow) ((1+sin(2?T-?/2))/2)3.5 where T is time normalised by the hydrograph duration (i.e. T increases from 0 to 1 over the course of the hydrograph), Qlow is the low flow discharge, and Qmax is the flood peak discharge. Simulations ran for a sequence of 150 annual flood hydrographs. The data consists of 150 output files, one for each simulated flood event. Each file has 6 columns of data; 1) x coordinate (m) 2) y coordinate (m) 3) elevation (m) - with 999 = no data (effectively, not an active part of the model domain) 4) depth (m) 5) unit discharge in x direction (m^2s^-1) 6) unit discharge in y direction (m^2s^-1)

Metadata

File Identifier:
6d044c3e-f433-3b14-e054-002128a47908
language:
eng
Resource type:
nonGeographicDataset
Hierarchy Level Name:
non geographic dataset
Metadata Contact:
Responsible Party:
Organisation Name:
British Geological Survey
Contact Info:
CI_Contact:
phone:
CI_Telephone:
voice:
+44 115 936 3100
Address:
Address:
Delivery Point:
Environmental Science Centre,Keyworth
city:
NOTTINGHAM
administrative Area:
NOTTINGHAMSHIRE
Postal Code:
NG12 5GG
country:
United Kingdom
e-mail:
enquiries@bgs.ac.uk
role:
pointOfContact
Date Stamp:
2024-04-24
Metadata Standard Name:
http://vocab.nerc.ac.uk/collection/M25/current/GEMINI/
Metadata Standard Name:
UK GEMINI
Metadata Standard Version:
2.3
Dataset URI:
http://data.bgs.ac.uk/id/dataHolding/13607328