Mechanical and microstructural analysis of synthetic quartz-cemented sandstones- data (NERC Grant NE/L002469/1)

P* data obtained through hydrostatic loading experiments, using triaxial experimental apparatus, as well as yield curve data obtained through differential loading tests, prior to the discovery of P* for different synthetic sandstones. The methodology used was taken from Bedford et al. (2018, 2019). Grain size analysis data obtained using a Beckman Coulter LS 13 320 laser diffraction particle size analyser. Particle analysis was conducted on five different synthetic sandstones with different grain size distributions. Secondary electron and backscatter electron SEM images for natural and synthetic sandstones. Secondary electron images were stitched together to form a whole core image. They were then binarised following the methodology of Rabbani and Ayatollahi. (2015). Hexagon grid size data used to obtain the correct grid size for performing porosity analysis across an mage using Fiji software (Brown, 2000). Bedford, J. D., Faulkner, D. R., Leclère, H., & Wheeler, J. (2018). High-Resolution Mapping of Yield Curve Shape and Evolution for Porous Rock: The Effect of Inelastic Compaction on 476 Porous Bassanite. Journal of Geophysical Research: Solid Earth, 123(2), 1217–1234. Bedford, J. D., Faulkner, D. R., Wheeler, J., & Leclère, H. (2019). High-resolution mapping of yield curve shape and evolution for high porosity sandstone. Journal of Geophysical Research: Solid Earth. Brown, G. O., Hsieh, H. T., & Lucero, D. A. (2000). Evaluation of laboratory dolomite core sample size using representative elementary volume concepts. Water Resources Research, 36(5), 484 1199–1207. Rabbani, A., & Ayatollahi, S. (2015). Comparing three image processing algorithms to estimate the grain-size distribution of porous rocks from binary 2D images and sensitivity analysis of the grain overlapping degree. Special Topics & Reviews in Porous Media: An International Journal, 6(1).
Nenalezeno https://resources.bgs.ac.uk/images/geonetworkThumbs/a5892237-d8ae-34b8-e054-002128a47908.png
non geographic dataset
: http://data.bgs.ac.uk/id/dataHolding/13607619
English
Geoscientific information
GEMET - INSPIRE themes, version 1.0: BGS Thesaurus of Geosciences:
NGDC Deposited Data
Compression tests
Porosity
Quartz
Sandstone
Image analysis
Free:
NERC_DDC
creation: 2020-05-08
2019-06-17 - 2020-05-05
University of Manchester
Professor G Vaughan
Manchester, M13 9PL
email: not available
Role: principal investigator
University of Liverpool
Elliot Rice-Birchall
Liverpool, L69 3GP
email: not available
Role: originator
University of Liverpool
Elliot Rice-Birchall
Liverpool, L69 3GP
email: not available
Role: point of contact

Data Quality

P* data obtained through hydrostatic loading experiments, using triaxial experimental apparatus, as well as yield curve data obtained through differential loading tests, prior to the discovery of P* for different synthetic sandstones. Grain size analysis data obtained using a Beckman Coulter LS 13 320 laser diffraction particle size analyser. Particle analysis was conducted on five different synthetic sandstones with different grain size distributions. Secondary electron and backscatter electron SEM images for natural and synthetic sandstones. Secondary electron images were stitched together to form a whole core image. They were then binarised. Hexagon grid size data used to obtain the correct grid size for performing porosity analysis across an mage using Fiji software.
INSPIRE Implementing rules laying down technical arrangements for the interoperability and harmonisation of Geology
Commission Regulation (EU) No 1089/2010 of 23 November 2010 implementing Directive 2007/2/EC of the European Parliament and of the Council as regards interoperability of spatial data sets and services

Constraints

The copyright of materials derived from the British Geological Survey's work is vested in the Natural Environment Research Council [NERC]. No part of this work may be reproduced or transmitted in any form or by any means, or stored in a retrieval system of any nature, without the prior permission of the copyright holder, via the BGS Intellectual Property Rights Manager. Use by customers of information provided by the BGS, is at the customer's own risk. In view of the disparate sources of information at BGS's disposal, including such material donated to BGS, that BGS accepts in good faith as being accurate, the Natural Environment Research Council (NERC) gives no warranty, expressed or implied, as to the quality or accuracy of the information supplied, or to the information's suitability for any use. NERC/BGS accepts no liability whatever in respect of loss, damage, injury or other occurence however caused.
Available under the Open Government Licence subject to the following acknowledgement accompanying the reproduced NERC materials "Contains NERC materials ©NERC [year]"

Metadata about metadata

a5892237-d8ae-34b8-e054-002128a47908
British Geological Survey
Environmental Science Centre,Keyworth, NOTTINGHAM, NG12 5GG, United Kingdom
tel: +44 115 936 3100
email: enquiries@bgs.ac.uk
Role: point of contact
2024-04-24

Coupled Resource