Pore-scale dynamics and the multiphase Darcy law

A pore-scale experimental investigation of microscopic steady-state flow during co-injection from very low to high flow rates in the pore space of a sandstone is applied using 4D synchrotron X-ray micro-tomography to advance our understanding of flow regimes. We report the results of micro-CT imaging experiments directly visualizing the simultaneous flow of both a wetting and a non-wetting fluid through a Bentheimer sandstone, at pore-scale resolution. For small flow rates, both fluids flow through unchanging, distinct, bicontinuous 3D pathways. At higher flow rates, however, the non-wetting fluid continually breaks up into discrete ganglia; these are then advected through the medium. We propose that the non-wetting fluid breaks up when the sum of the viscous forces exerted by the wetting and the non-wetting fluids exceed the capillary forces at the pore scale.
Nenalezeno https://resources.bgs.ac.uk/images/geonetworkThumbs/82b5c6fd-4532-716b-e054-002128a47908.png
non geographic dataset
: http://data.bgs.ac.uk/id/dataHolding/13607426
English
Geoscientific information
GEMET - INSPIRE themes, version 1.0: BGS Thesaurus of Geosciences:
NGDC Deposited Data
UKCCS
Fluid flow
Carbon capture and storage
Darcys law
Free:
NERC_DDC
publication: 2019-02-27
2017-12-09 - 2017-12-12
Qatar Carbonates and Carbon Storage Research Centre
qccsrc@imperial.ac.uk
, United Kingdom
email: not available
Role: point of contact
Imperial College London
Martin Blunt
London, United Kingdom
email: not available
Role: author
Imperial College London
Branko Bijeljic
London, United Kingdom
email: not available
Role: author
Imperial College London
Ying Gao
London, United Kingdom
email: not available
Role: author
Imperial College London
Ying Gao
London, United Kingdom
email: not available
Role: point of contact

Data Quality

1. A dry scan was taken with 2 MPa confining pressure. 2. The brine-saturated sample was scanned. A back pressure of 2,000 kPa was set for the whole system. 3. Oil was injected at 2 mL/min for 30 minutes to reach the initial water saturation. 4. Water and oil were injected when fw were 0.15 and 0.3 by keeping the total volumetric flow rate fixed at 0.02 mL/min for one and half hours respectively. 5. Water and oil were injected at equal flow rate of 0.01 mL/min respectively. At the same time, the pressure drop across the whole sample was recorded. Two more hours were waited after the pressure stabilized. Successive scans were taken from the start without stopping. 6. The total flow rate was increased to 0.04 mL/min, 0.08 mL/min, 0.4 mL/min, 0.8 mL/min and 1.2 mL/min step by step when fractional flow was kept at 0.5. For each flow rate, two more hours were waited until steady state.
INSPIRE Implementing rules laying down technical arrangements for the interoperability and harmonisation of Geology
Commission Regulation (EU) No 1089/2010 of 23 November 2010 implementing Directive 2007/2/EC of the European Parliament and of the Council as regards interoperability of spatial data sets and services

Constraints

The copyright of materials derived from the British Geological Survey's work is vested in the Natural Environment Research Council [NERC]. No part of this work may be reproduced or transmitted in any form or by any means, or stored in a retrieval system of any nature, without the prior permission of the copyright holder, via the BGS Intellectual Property Rights Manager. Use by customers of information provided by the BGS, is at the customer's own risk. In view of the disparate sources of information at BGS's disposal, including such material donated to BGS, that BGS accepts in good faith as being accurate, the Natural Environment Research Council (NERC) gives no warranty, expressed or implied, as to the quality or accuracy of the information supplied, or to the information's suitability for any use. NERC/BGS accepts no liability whatever in respect of loss, damage, injury or other occurence however caused.
Available under the Open Government Licence subject to the following acknowledgement accompanying the reproduced NERC materials "Contains NERC materials ©NERC [year]"

Metadata about metadata

82b5c6fd-4532-716b-e054-002128a47908
British Geological Survey
The Lyell Centre, Research Avenue South, EDINBURGH, EH14 4AP, United Kingdom
tel: +44 131 667 1000
email: enquiries@bgs.ac.uk
Role: point of contact
2024-04-24

Coupled Resource