EPSRC Project: ORGMEMT - Organic Mixed Matrix Membrane Technologies for Post-Combustion CO2 Capture

The UK Government has set targets for the reduction of CO2 emissions of 80 % by 2050. Post-combustion capture of CO2 from power plants is key if we are to achieve these targets. Post-combustion CO2 capture is challenging due to the low concentration of CO2 in the waste stream and the presence of impurities (H2O, NOx, SOx, etc). Post-combustion capture adds energetic cost via the requirement to capture and compress the CO2. Amine-based scrubbing processes are being evaluated for post-combustion CO2 capture. This is a costly process, and the amines are corrosive. Other candidate technologies include physical adsorption into solid sorbents coupled with pressure-swing or temperature-swing adsorption/desorption. In principle this may lower the energy overhead, but the volume of sorbent required is extremely large, limiting the range of sensible materials. Membrane-based processes have potential advantages over the above. In particular, there are no losses due to heat required to regenerate and release CO2 from the spent sorbent or solvent, and the footprint for the technology and amount of material required is comparatively small. Here, we will develop advanced mixed matrix membranes (MMMs) technology utilising organic fillers, rather than inorganic fillers, that could be cost-effectively fitted to power plants to separate and capture CO2. There has been much research on inorganic-organic MMMs, using fillers such as zeolites and MOFs. However, it is challenging to achieve a homogeneous dispersion of the inorganic filler particles in the polymer matrix. This is exacerbated by the lack of compatibility between most fillers, which are frequently crystalline inorganic or metal-organic materials, and the membrane polymers, which are invariably amorphous and organic. We build therefore on our unique report of organic-organic MMM (Angew Chem Int Ed, 2013) , where excellent dispersion of the organic filler was found and there was good adhesion between the organic polymer and the organic filler, both of which are predominantly aromatic structures. We address this by bringing together two UK groups who have pioneered in the development of novel porous membranes (Budd) and new microporous organic materials (Adams, Cooper). Grant number: EP/M001342/1.
Nenalezeno https://resources.bgs.ac.uk/images/geonetworkThumbs/1d487e21-6d78-0c79-e054-002128a47908.png
non geographic dataset
BGS Homepage - The BGS Homepage is an entry point to the BGS data services.
: http://data.bgs.ac.uk/id/dataHolding/13606790
English
Geoscientific information
GEMET - INSPIRE themes, version 1.0: BGS Thesaurus of Geosciences:
UKCCS
NGDC Deposited Data
Carbon capture and storage
Free:
NERC_DDC
creation: 2014-10
after - before
University of Liverpool
Andrew Cooper
, United Kingdom
email: not available
Role: principal investigator
University of Manchester
Peter Budd
, United Kingdom
email: not available
Role: point of contact
University of Manchester
Peter Budd
, United Kingdom
email: not available
Role: principal investigator

Data Quality

EPSRC project, grant number: EP/M001342/1, Lead institution: University of Liverpool
INSPIRE Implementing rules laying down technical arrangements for the interoperability and harmonisation of Geology
Commission Regulation (EU) No 1089/2010 of 23 November 2010 implementing Directive 2007/2/EC of the European Parliament and of the Council as regards interoperability of spatial data sets and services

Constraints

The copyright of materials derived from the British Geological Survey's work is vested in the Natural Environment Research Council [NERC]. No part of this work may be reproduced or transmitted in any form or by any means, or stored in a retrieval system of any nature, without the prior permission of the copyright holder, via the BGS Intellectual Property Rights Manager. Use by customers of information provided by the BGS, is at the customer's own risk. In view of the disparate sources of information at BGS's disposal, including such material donated to BGS, that BGS accepts in good faith as being accurate, the Natural Environment Research Council (NERC) gives no warranty, expressed or implied, as to the quality or accuracy of the information supplied, or to the information's suitability for any use. NERC/BGS accepts no liability whatever in respect of loss, damage, injury or other occurence however caused.
Either: (i) the dataset is made freely available, e.g. via the Internet, for a restricted category of use (e.g. educational use only); or (ii) the dataset has not been formally approved by BGS for access and use by external clients under licence, but its use may be permitted under alternative formal arrangements; or (iii) the dataset contains 3rd party data or information obtained by BGS under terms and conditions that must be consulted in order to determine the permitted usage of the dataset. Refer to the BGS staff member responsible for the creation of the dataset if further advice is required. He / she should be familiar with the composition of the dataset, particularly with regard to 3rd party IPR contained in it, and any resultant use restrictions. This staff member should revert to the IPR Section (ipr@bgs.ac.uk) for advice, should the position not be clear.

Metadata about metadata

1d487e21-6d78-0c79-e054-002128a47908
British Geological Survey
The Lyell Centre, Research Avenue South, EDINBURGH, EH14 4AP, United Kingdom
tel: +44 131 667 1000
email: enquiries@bgs.ac.uk
Role: point of contact
2024-04-24

Coupled Resource